"POPULATION CODING IN SOMATOSENSORY CORTEX"

A review article by Petersen et al. (2002)

Jamil M. Demille O. Paul I.

Individual neurons code for a different set of stimulus values

Individual neurons work together to encode all possible stimuli Analogy: Jelly beans!

Population Coding Refresher

Jelly bean neurons: population coding!

Berry Bik

Cinnamor

Orange Sherbel

Strawberry

Cheesecak

From: http://i.imgur.com/PUXBQ2W.jpg

Mango Pineapple Salsa

Crushed

Background

- Neuronal representations of discriminated stimuli must also be distinct
- Stimuli coded as temporo-spatial activation patterns

From: https://www.researchgate.net/figure/fMRI-response-to-rat-whisker-barrel-cortex-stimulation-A-Group-statistical-activation_fig4_267272836

Paper Overview

Goal: Compare candidate cortical population codes

- How?
 - Identify features of neural responses that might underlie stimulus discrimination
 - Systematically quantify the contribution of these features to the cortical population code

restricted subset of neurons

time interval vs precise position of spike in time or is their correlation important?

BUILDING A FRAMEWORK:

Quantifying neural codes

An "ideal decoder"

- Monitors the neuronal ensemble activity
- Judges stimulus identity for each trial
- Can quantify the performance of how the decoder varies
 - Depends on what components of population activity are available to it

SPATIAL ORGANIZATION OF NEURAL CODING:

Anatomical relationships and stimulus locations

Role of spatial organization

Petersen et al., 2002

ANN decoder... simplified

Inspired from: https://www.youtube.com/watch?v=aircAruvnKk

ANN decoder

 Activation of neurons on an arbitrary scale of 0 to 1 (electrode data)

Results:

 ANN determines the stimulus type for 30 neurons more easily than for 1 neuron

science/artificial-neural-networks-applications-algorithms/

Is the combination of neurons firing important or do surrounding neurons "support" the homotopic activation?

Petersen et al., 2002

- Population d': "the difference in the mean number of spikes evoked by two stimuli normalized by the spike count variability."
- Results: d' for off-center columns is high enough to discriminate the stimuli → multicolumnar coding?
 - But, 90% of discriminability due to the on-center
 → spatially localized coding

ROLE OF SPIKE TIMING

For population coding

Recall spike timing

Role of spike timing

Count all spikes in the given time window

Number of spikes per period of time t after stimulation Divide the time period into the "bins", and count the number of spikes within each bin

Precision of the spike timing

T= 40ms in the experiment

ANN approach

- Only 1 bin (40ms long)
- Increase the resolution (6mseach bin)

Results:

Stimulus discriminability improves with higher temporal resolution

From: https://www.xenonstack.com/blog/data-science/artificial-neural-networks-applications-algorithms/

Information theory approach

- Information theory: "how well an ideal observer of neuronal responses can, on average, discriminate which stimulus occurred, based on a response observed on a single trial."
- Results: 90% of information transmitted by the train could be accounted for by just the first spike in sequence timing. Later spikes were redundant, but informative.

ROLE OF CORRELATED SPIKE PATTERNS

For population coding

Role of correlated spike patterns

• Do correlations provide an ideal decoder with more precise information?

Petersen et al., 2002

Results (52 pairs analyzed): cross-cell patterns are likely not synergistic

Significance and Limitations

Significance:

Limitations:

- A computer can be used to decode neuronal activity
- Implications for brain decoding technologies

- Current statistical models may contradict one another: correlation vs redundancy
- An "ideal decoder" and it's applicability

restricted subset of neurons

time interval vs precise position of spike in time or is their correlation important?

Conclusions

Neurons beyond the principal column of stimulation fire redundantly

	۲× ۲	
4		

Precise timing of individual spikes (especially the first one) are key for perceptual decision

B	

Neuronal activation correlation account for a small amount of all available information during network activation

Cross-cell correlation: how can we use it better?

Future Directions

Can we identify individual spikes for every single type of perceptual decision?

How can ANN models reflect neural plasticity?

References

- 1. Dayan & Abbott: Theoretical Neuroscience. MIT Press 2001
- 2. Petersen, R. S., Panzeri, S. & Diamond, M. E. Population coding in somatosensory cortex. *Curr. Opin. Neurobiol.* **12**, 441–447 (2002).

References: Images and Videos

- <u>http://matlab.izmiran.ru/help/toolbox/nnet/selfor11.html</u>
- <u>https://www.researchgate.net/figure/fMRI-response-to-rat-whisker-barrel-cortex-</u> <u>stimulation-A-Group-statistical-activation_fig4_267272836</u>
- <u>http://i.imgur.com/PUXBQ2W.jpg</u>
- <u>https://www.xenonstack.com/blog/data-science/artificial-neural-networks-applications-algorithms/</u>
- <u>https://www.youtube.com/watch?v=aircAruvnKk</u>